Cathepsin S is activated during colitis and causes visceral hyperalgesia by a PAR2-dependent mechanism in mice.
نویسندگان
چکیده
BACKGROUND & AIMS Although proteases control inflammation and pain, the identity, cellular origin, mechanism of action, and causative role of proteases that are activated during disease are not defined. We investigated the activation and function of cysteine cathepsins (Cat) in colitis. METHODS Because protease activity, rather than expression, is regulated, we treated mice with fluorescent activity-based probes that covalently modify activated cathepsins. Activated proteases were localized by tomographic imaging of intact mice and confocal imaging of tissues, and were identified by electrophoresis and immunoprecipitation. We examined the effects of activated cathepsins on excitability of colonic nociceptors and on colonic pain, and determined their role in colonic inflammatory pain by gene deletion. RESULTS Tomography and magnetic resonance imaging localized activated cathepsins to the inflamed colon of piroxicam-treated il10(-/-) mice. Confocal imaging detected activated cathepsins in colonic macrophages and spinal neurons and microglial cells of mice with colitis. Gel electrophoresis and immunoprecipitation identified activated Cat-B, Cat-L, and Cat-S in colon and spinal cord, and Cat-S was preferentially secreted into the colonic lumen. Intraluminal Cat-S amplified visceromotor responses to colorectal distension and induced hyperexcitability of colonic nociceptors, which required expression of protease-activated receptor-2. Cat-S deletion attenuated colonic inflammatory pain induced with trinitrobenzene sulfonic acid. CONCLUSIONS Activity-based probes enable noninvasive detection, cellular localization, and proteomic identification of proteases activated during colitis and are potential diagnostic tools for detection of predictive disease biomarkers. Macrophage cathepsins are activated during colitis, and Cat-S activates nociceptors to induce visceral pain via protease-activated receptor-2. Cat-S mediates colitis pain and is a potential therapeutic target.
منابع مشابه
Antagonism of the proinflammatory and pronociceptive actions of canonical and biased agonists of protease‐activated receptor‐2
BACKGROUND AND PURPOSE Diverse proteases cleave protease-activated receptor-2 (PAR2) on primary sensory neurons and epithelial cells to evoke pain and inflammation. Trypsin and tryptase activate PAR2 by a canonical mechanism that entails cleavage within the extracellular N-terminus revealing a tethered ligand that activates the cleaved receptor. Cathepsin-S and elastase are biased agonists that...
متن کاملProtease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice.
Exacerbated sensitivity to mechanical stimuli that are normally innocuous or mildly painful (mechanical allodynia and hyperalgesia) occurs during inflammation and underlies painful diseases. Proteases that are generated during inflammation and disease cleave protease-activated receptor 2 (PAR2) on afferent nerves to cause mechanical hyperalgesia in the skin and intestine by unknown mechanisms. ...
متن کاملMitogenic and Migratory Signals from GPCRs and Tyrosine Kinases
PARs (protease-activated receptors) are a family of four G-protein-coupled receptors for proteases from the circulation, inflammatory cells and epithelial tissues. This report focuses on PAR2, which plays an important role in inflammation and pain. Pancreatic (trypsin I and II) and extrapancreatic (trypsin IV) trypsins, mast cell tryptase and coagulation factors VIIa and Xa cleave and activate ...
متن کاملEssential Role of Mast Cells in the Visceral Hyperalgesia Induced by T. spiralis Infection and Stress in Rats
Mast cells (MCs) deficient rats (Ws/Ws) were used to investigate the roles of MCs in visceral hyperalgesia. Ws/Ws and wild control (+/+) rats were exposed to T. spiralis or submitted to acute cold restraint stress (ACRS). Levels of proteinase-activated receptor 2 (PAR2) and nerve growth factor (NGF) were determined by immunoblots and RT-PCR analysis, and the putative signal pathways including p...
متن کاملProtease-activated receptor 2 sensitizes TRPV1 by protein kinase Cepsilon- and A-dependent mechanisms in rats and mice.
Proteases that are released during inflammation and injury cleave protease-activated receptor 2 (PAR2) on primary afferent neurons to cause neurogenic inflammation and hyperalgesia. PAR2-induced thermal hyperalgesia depends on sensitization of transient receptor potential vanilloid receptor 1 (TRPV1), which is gated by capsaicin, protons and noxious heat. However, the signalling mechanisms by w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gastroenterology
دوره 141 5 شماره
صفحات -
تاریخ انتشار 2011